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I INTRODUCTION

With the advent of high speed computers, new approaches to
the solution of engineering problems have arisen. oOne such field
is Computational Fluid Dynamics, in which numerical techniques
such as finite differences are used to numerically integrate
partial differential equations governing the physical phenomena.
One problem with this approach is that on the boundary of the
numerical grid, artificial boundary conditions must be imposed.
Usually, these conditions are based on a linearization around the
flow at infinity, and are thus non-physical. In this paper, we
perform a series of numerical experiments, in which we evaluate
various boundary cond%tions of this type, and investigate whether
the linear model is an acturate representatiop of the fully non-
linear equations.

The flow of fluid around obstacles in téo dimensions is

described by the compressible Navier-stoke§3equations
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Here,
quantities

internal energy.

the four variables p,u,v,e represent the physical

of density, x- and y- components of velocity, and
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This nonlinear system of mixed parabolic-hyperbolic type in

two space dimensions and time, with four independent variables

must be solved in an exterior region in RZ.

The geometry will

depend on the particular physical situation that one is

attempting to model.

The situation we shall be interested in occurs in modelling

-
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flight conditions, in which the conditions at infinity are pre-

scribed with a large u-velocity and v-velocity zero and pre-

scibed p_ and e_. Fluid flows around an obstacle in x-y space.
Usually, this equation is solved numerically using a finite

difference scheme of the Lax-Wendroff type, such as the

MacCormack ADE method. Since these calculations can only be made
{ on a finite grid of points in xy space, an artificial far-field
E boundary is created. This boundary ought be sufficiently far

- away from the object around which the fluid is flowing so that

local phenomena are not neglected by omitting part of the region

of fluid flow. On the other hand, the farther away the region
is, the more grid-points need to be included and thus the more

expensive and time-consuming the computations:become.

One then has the problem of deciding what effect this new
boundary has on the solution of the problem.: Because of the
viscosity terms in (1) and the additional é;tificial viscosity
introduced by the finite difference schemes, some boundary condi-
tions must be imposed.

As we shall show in this report on numerical experiments,
considerable care must be exercised in the choice of the boundary
conditions. 1If one is interested in steady state flow, then one
starts off with an initial approximation, and hopes that the
errors in the numerical solution propagate out of the region as
transitory disturbances in the physical variables. One then

expecﬁs to converge to the steady state flow.
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We have previously shown that the incorrect choice of

boundary conditions can give rise to some of the following
phenomena: i) reflecting boundary conditions, in which the
disturbances in the physical variables represented by the
difference between the steady state flow and the initial
conditions are not allowed to exit through the far-field boundary
but instead continue echoing within the grid, and giving rise to
spurious oscillatory solutions; 1ii) under-specified boundary

conditions, in which large errors are introduced before

convergence takes place,

IJ this paper, we first discuss the theory for simple linear
hyperbolic systems in one and two space dimension. We then
analyze several computational experiments in the light of this

theory in two space dimensions,

II A REVIEW OF THE LINEAR CASE

The method used in the calculations which are the subject of

this paper is the MacCormack alternating direction explicit




scheme. [6]) [15]). This is a multistep efficient scheme which
reduces in the linear case to the Lax-Wendroff scheme. For a

diagonal N x N matrix A, this scheme approximates the equation

Ut+AUx=0by

. [N+l _ n At, . n n

3 (2) Uj = = U5 = Ax(U5417Y5-),
t + 22357 (0 _oghg? )
. Ax j+1 j T i=1

As usual, {j1;j<J} represents the space step and n

represents the time step. If we are considerjng the equation

Ut + Aux =0

on the region {(x,t), 0<x<l, t>0} then the ‘analytic solution is
determined by the initial cbnditions and boundary conditions at

x = 0 and x = 1. If the first k eigenvalues are positive and the
remaining N - k are negative then the quantities u;---u, must be
prescribed at x = 0 and uy,;---uy must be prescribed at x = 1.
Thus if W; = (uy, ug,--=ug, 0 0---0) and W;y = (0, 0,---0,
uk+1—--uN) then for well-posedness, the boundary conditions must

be

f(t) + B at x =0

x
“
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g(t) + B,W, at x

"
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This gives a total of N boundary conditions. 1If either

kx(n-k) matrix By and the (n-k)xk matrix B, are non-zero, then

the boundaries are reflecting, that is a wave in W; travelling

left to right will be reflected as a wave in Wiy running right to
left.

1f a boundary is supposed to be non-physical, then it should
not be reflecting, since the reflections would depend on the
location of the artificial or numerical boundary.

Now let us consider the difference scheme of (2). 1If the
grid points are given by {xj}g with x = 0 and xy = 1, then it is
clear from (2) that 2N boundary conditions are required. Thus we
must prescribe boundary conditions in such a way as to least
affect the closeness of the numerical'to the analytic solution.

This situation has been the subject of several papers. 1In
[3], Gustaffson and Kreiss point out the danger of over-
specification, By this is meant that all u& are specified at
both endpoints. This might be tempting because one might argue
that if the boundary onditions uj;---u, are given constants at
x = 0, then eventually these same values will be assumed by these
variables at x = 1. However, in [4] it is pointed out that
convergence may Or may not occur, depending on whether the number
of grid points is odd or even.

A method which works well, as pointed out in [3], is to

impose

;

..............................
-, . ..
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Ui,s T Yi,7-1 l <1 <Kk,
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This introduces small errors at the outflow but these errors
do not propagate upstream. This is proved analytically by Parter
110). :

In [12]), many different numerical boundary conditions are
given., The conclusion is that upwind differéncing at the point

of outflow ‘

un+1 = un + A_(AE

J j i (ax) (ug_q7uy)

is most accurate, although it converges with the same speed as
the previously discussed u, = 0.

The most serious error which one could make would be to
prescribe conditions at the wrong end. 1In other words, since up

is right running, this would involve prescribing u; at x = 1 and

imposing ujx =1 at x = 0. This would result in convergence to a




steady state which depends on the initial conditions.

IIT THE NAVIER-STOKES EQUATIONS AND CHARACTERISTIC VARIABLES:

We now begin our discussion of the equations of gas
dynamics. We will neglect viscosity for the purposes of this
analysis. We will assume that the flow is one-dimensional and

subsonic and that the deviations from free-stream solutions are
small. This will allow us to neglect second order terms.
There are many forms of this equation, but the one most

suitable for the present discussion is

13U ot
at T Ax = 0 ;
where
A = 0 1 | 0
u2
(Y—3)5 (3-y) u y -1
(7-1)43 - yeu xe . l(Y-l)uz Yu
P P 2
and
P
U ={pu
e
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where
A=mn"1 am
and
M1 = 1 0 0 0= p
-u/p 1/p u u
() u? (1-y)u (y-1) o

Here we make the key assumption that deviations from the

free stream are going to be sufficiently small that we can treat
the entries in the matrix A as being approximately constant (at
least locally). Denote these frozen variables by 0O-subscript.

4

We then make the substitution

2
(4) W) 1 0 -l/cg 0
W, |= 0 1 1/p,¢, u 3
Wy 0 -1 1/p4c, p

and when this is substituted into ( ) we obtain

1 1 _ 1
(3) 3t " Yoex T O MpT e o 2P
C
0
IW W
2 2 _ 1
et (Up*C) 5 = O Wy = u+ =P
0o
aw aW
3 3 _ - 1
5t (YS! —5x = O Wy = -u+ ——=p
0o
e T G e i AR T A T e A N ey




------------

10

Notice now how this breaks down into two separate cases. On the
one hand, if flow is supersonic then all wave motion is in the
left to right direction. 1In this case all analytic boundary
conditions should be prescribed at the left hand side and only
numerical boundary conditions prescribed at the right hand side.

Since the substitution (4) is equivalent to

= Ky + (00/200)(K2+K3)

©
i

[~
it

1/2(K2~K3)

it follows that prescribing all physical variables at the inflow
and prescribing 23p/3x = 3u/3x = 3p/dx = 0 at the outflow is

legitimate in terms of analytical and numerical requirements in

the supersonic case,

]

However, we must now consider the case of subsonic flow. In

this case the situation is completely different. BHBere, two of
the variables W; and W, go left to right with velocities ujy and
respectively, whereas one of the variables runs right to

» uy + ¢y
: left with velocity Co-Yp- The variables Wy and W, have no clear
physical significance, yet it is only in considering these variables
that the full wave structure of the equations (5) or (6) can be
understood., Thus, one would be led to predict, for small

deviations from free stream conditions, that the best boundary

!

conditions would be, for an interval (0,L)
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dwl
(6) Wl (0,t) = Kl —ax (L,t) =0
dW2
W2 (0,t) = K2 —3Ix (L,t) =0
dW3
—dx (0,t) = 0 W3 (L,t) = K3

Note the curious aspect of these boundary conditions. 1In
order to prescribe the numerical values K, and K,, we need to
know accurately all three physical variables at some distance to
the left. However, only the two combinations K, and K, are pre-
scribed. This can be summarized by saying that while we have
used all three pieces of information upstream, we have done so in
such a way that one degree of freedom remains; thus allowing the
waves in W3 to exit without reflections,

on the basis of the linearized model, vérious other combi-
nations would be well-posed. For example, Et is possible to
prescribe K, in terms of either kK, or K, at the outflow x = L.

Thus at the outflow one may prescribe

(t) + ¢, W, (L,t) + c W, (L,t)

W 1M1 2V

(L,t) = F

2 3

For example if c, = 0, cy = 1, then this amounts to putting

(i.e., we prescribe velocity at the outflow).

.......
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Alternatively, we might take ¢; = 0, c, = -1 and we would get

(8) p (L,t) = ((pgceg)/2)Fy

(i.e. we prescribe pressure at the outflow).
Many other combinations are possible, but as remarked in section
I1, all these will cause errors in the initial data to be
reflected back into the medium as waves running from right to
left. For example, we would predict that an error in W5 would be
reflected back as an error in W, if we use boundary condition
(8). As we shall see, this is exactly what happens.

At the inflow end, we may prescribe W, and W, in terms of
W3. Thus the following boundary condjtions are well posed;
(9)(a) w, (o,t) = F, + c;W; (0,t)

(b) Wy, (0,t) = Fy, + c,W3 (0,t)
For example, choosing Cy = +1 in (9b) corresponds to
u(o,t) = (1/2)F,
(i.e. prescribing u at the inflow) and ¢, = -1 corresponds to

p(ort) = (poco/z)Fz

(i.e. prescribing p). One can prescribe the combination (u,p) by

first choosing ¢, = 1 (thereby prescribing u) and then choosing

c; = So/co, thereby prescribing p in terms of a given F, and a

LA atus £
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VI TWO DIMENSIONAL RESULTS

Having now understood the phenomena which can occur when
calculations are made with one space dimension, we now consider
the more complicated situation of two space dimensions,

In this situation, we shall solve the Navier Stokes equation
(1), again by the standard MacCormack A.D.E. scheme on a 20 x 20
grid, which is a very simplified model of a wind tunnel. We
shall continue to consider flow close to the free stream flow
(M_ = 0.5) previously studied in the one dimensional case. The
physical values are given earlier. Figure 8 shows the geometry
of the situation. The fluid is flowing in at the top right
corner of the grid and flowing out at the bottom left.

We have three distinct types of boundaries to consider. We
have the inflow and outflow boundaries (as béfore) and in
addition, two'sidewall boundaries, where thg fluid is flowing
parallel to the boundary. ;.

We shall continue to impose one dimen;ional boundary
conditions of the type given in the first section on the inflow
and outflow, along with the additional condition v = 0. This
says the fluid flow is one dimensional at the inflow and outflow,
and could be physically reasonable.

When we come to the sidewall conditions we must undertake
another one-dimensional analysis. Thus, we assume all variables

are constant in the x-direction and variation only *akes place in

the y-direction.
/
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' This leads to the set of equations
: (6) Ve + AV, = 0
where

x . A _

vV = [p A= (0 0 1 0

u 0 0 u 0
u2
v ~7(Y-1) ~u(y-1) O y -1
2
e u _
o] o 0 q-Yem oo
Freezing the coefficients of A in (6), we substitute

= p P
iy (7) Tl p + C2 '_
- 0 :
Q-° . 1

T, = vV p

2 poco
".
1 4

- T, = -v + p

3 poc0

'1‘4 = u

Equation (6) is then transformed to
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Thus, if we only consider deviations transverse to the free
stream flow, we have on the basis of the linearized model, four
non-physical variable T,, Ty, T3, T4, two of which are u and
entropy. T; move with zero velocity in the y direction, one of
which, T,, moves with speed Cp in the positive x direction, and
one of which moves with speed c in the negative x direction.

[ 4
Thus one dimensional theory.predicts that at . the sidewall, we

.
12

should impose

Y=0 y =L,
le = const le =0
T3y = 0 T3 = const
T4y—0 T4y=0

This, together with the inflow and outflow conditions gives the

following set of boundary conditions

''''''''''''''' R o _.-_..-.— .-r-r-...-- W e T et et T et R Y
“L.:R;xxwwrx‘:ehh3£¢aﬁ S T RN T T T T e e e
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Inflow
vy =V,
Py = 3 Ipy + pgcolkymuy)]
P
1 2
u, = = [k, - + u,]
1l 2 3 0c0 2
Po . P2
ey = kg + 5=— [ + k. - u.,]
1 1 2c0 P00 3 2

where the free stream values are specified in the characteristic
variables k1 =p,_ - pm/coz, k3 =U_ + pc/poc0 and where the zero-

subscript refers to frozen variables

Outflow

T T T ey




........
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Top wall

0 Ps1

Py = —7 [vy, * F%EE - k)
vj = 1/2k3 + 1/2(vj_1 + pj_l/poco)
Py = 72% (Vjo1 * igéz = k3) * ey T ;% Pj-1
uj = Uy
Bottom wall
up = e .

vl = 1/2[V2 + k2 - pz/(poco)]
P00 é
P, = —5— [-V2 + k2 + Pz/(poco)]
Py = Py * (90/200) [—V2 + k2 - pz/pocol

where the free stream values are used to specify the

characteristic combinations

p

Wy =V, - P./pyCqe

2 w T

PoCo

v, TR T A M P i At M)
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The purpose of the present grant was two-fold: first to
expand the previous work to situations where the flow was at an
angle a to the artificial boundary, but is primarily steady-
state, and second, to see how the artificial boundary conditions
apply in period situations where convergence to free stream is
not expected,

The first objective is clearly desirable, simply to save in
additional computing time. The requirement that the grid not be
rectangular with boundaries either parallel to or perpendicular
to the free stream at infinity clearly can be used to remove a
large numger @f points from the grid. The entire boundary can be
chosen approximately equidistant from the object whose flow char-
acteristics are being studied.

The second objective was chosen because of its importance in
modelling flow in the compressors of turbines. If one is
attempting to design turbine compressors, one must have knowledge
of how the flow in the area between the stators and the rotors is
behaving. This is almost impossible to measure.

on the other hand, to accurately model the entire inside of
the compressor requires a computational capability far exceeding
the largest of today's computers, Thus one models only the flow
past two blades of the rotor, and uses periodicity to extend the

calculations to the entire rotor. The flow coming in past the

. PR -
BOPUUAC O PR PE A Wi ¢




stator is regarded as a periodic inflow term.
The following pages summarize the results of the research on

these two projects.

Section I Flow at an angle of incidence «a.

The previously outlined boundary conditions were used.
Computations were done on the basis of the inflow or outflow
depending on the flow perpendicular to the surface. For computa-
tional simplicity, we chose a rectangular grid, but choose
u, = V_ = 300 This results in a 45° angle of incidence or
exit. We impose an initial 10% disturbance in W,, the right
running characteristic variable and observe what happens as it
exits. Recall that this disturbance runs at an angle of 45° to
the flow. The following plots for W, at various iteration
numbers show it exiting without any surprising phenomena, similar
to the one-dimensional case. By the sixty-fifth iteration, the
flow has almost converged to steady state. There appear to be
some small reflections (as shown in the last plot) in W3, but
nothing to worry about.

Thus we can conclude that the inflow-outflow boundary
conditions work reasonably well, Subject to a rotation of

coordinates, they can work on any geometry - the only decision is

whether we are at an inflow or outflow point,




> 11. The case of periodic BCs
We now consider some experiments on the case of periodic
boundary conditions. We study flow parallel to the rectangular
grid, perpendicular to the inflow and parallel to the side-walls.
The most obvious boundary condition is pure periodic.
S1 = Sp-1r S, = S» for all physical variables S. This, it was
feared might lead to over specification, but these fear appeared
Q groundless. A sight-traveling wave would exit to the right, and
reappear at the left in a predictable and correct manner.
The next objective was to see if this could be done by only
using periodicity in the two sideways traveling periodic waves.
The reason for this was to minimize storage problems for the more
complicated turbine problem already di;cussed.
Curiously, this method failed., Furthermore, the failure

seems intrinsic to the whole idea, as we shall demonstrate.

At

First the W, wave appears in iteration 5 and proceeds to
exit. Periodicity requires that it reappear, and this can be
seen in iteration 20, However, already, a sharp spike
(reminiscent of over specificgtion is appearing in W3 by
iteration 20. As far as iteration 40 W, continues to progress
from right to left, but at iteration 55, sharp spikes beygin to
develop in W, and W;. This seems to suyggest overspecification at
the corners, but as far as we know, this is not the problem,
Shortly afterwards the program crashes. The relevant portion of
. the program for the boundary condition implementation is

included.
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Finally, we attempted to run periodic characteristic B.C.s
on a one-dimensional basis. We felt that since the problem
manifested itself at the corners, if we removed the corners the
problem should go away. We next show what happened in this
situation.

First we see the one-dimensional wave in W, moving to the
right, exiting and reappearing by the iteration 20. However,
sharp spikes appear in W3 by this time. W, appears to behave
well until iteration 85, but either reflection or some non-linear
instability lies caused W3 to grow catastrophically., Clearly
this represents failure of the boundary conditions, even in the ‘
one-dimensional case.

various minor variations were tried, but all produced the

same basic phenomena.
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Conclusion

PRIV M M a By

Non-reflecting characteristic boundary conditions work well
; so long as the flow is basically returning to steady state. This
; was seen in the first series of numerical experiments.

However, at this stage of development they cause strange
: instabilities which prevent efficient modelling of periodic

phenomena. The reasons for this are not understood at the

present.
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